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Abstract
Conditions for bound states for a periodic linear chain are given within the
framework of an exactly solvable non-relativistic quantum-mechanical model
in three-dimensional space. These conditions express the strength parameter
in terms of the distance between two consecutive centres of the chain, and of
the range interaction parameter. This expression can be formulated in terms of
polylogarithm functions, and, in some particular cases, in terms of the Riemann
zeta function. An interesting mathematical result is that these expressions also
correspond to the spectra of Toeplitz complex symmetric operators. The non-
trivial zeros of the Riemann zeta function are interpreted as multiple points, at
the origin, of the spectra of these Toeplitz operators.

PACS numbers: 02.30.−f, 03.65.Ge, 61.50.Ah

1. Introduction

Solvable models in quantum mechanics are extremely useful, both for obtaining specific results
and for testing different methods of approximation which are required for studying non-exactly
solvable models. Few solvable models exist, and among them, models based on the so-called
‘point interactions, zero-range potentials, delta interactions, Fermi pseudopotentials, . . .’ have
been thoroughly studied and applied (see e.g. [1, 2]).

Recently, another solvable model with non-zero range has been proposed [3], and applied
[4–6]. The (one-particle) Hamiltonian for this model is [3]: H = p2

2M
+
∑n

j=1 Vj , where Vj is
a sum of separable interactions centred on the point Pj determined with respect to an arbitrary
origin O by the vector aj = �OPj . Specifically

Vj =
∑

k

λk
j

∣∣ξk
j

〉 〈
ξk
j

∣∣
∣∣ξk

j

〉 = exp(−iaj · p)
(
rk
j

)3/2∣∣rk
j , �k

j ,m
k
j

〉
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where p is the momentum operator. The vector
∣∣rk

j , �k
j ,m

k
j

〉
is an eigenvector of the squared

orbital angular momentum with eigenvalue �k
j

(
�k

j + 1
)
, an eigenvector of the component �z of

the orbital angular momentum with eigenvalue mk
j , and a generalized eigenvector of the radial

position operator with generalized eigenvalue rk
j ,

(�x ± i�y)|r, �,m〉 =
√

(� ± m + 1)(� ∓ m)|r, �,m ± 1〉
〈r ′, �′,m′ | r, �,m〉 = δ(r ′ − r)

r2
δ��′δmm′

〈r′ | r, �,m〉 = δ(r ′ − r)

r2
Ym

�

(
r′

r

)
.

The operator exp(−iaj · p) translates the vector
∣∣rk

j , �k
j ,m

k
j

〉
from the point O to the point

Pj . The parameters rk
j and λk

j are respectively the range and the strength of the separable
interaction

∣∣ξk
j

〉 〈
ξk
j

∣∣. For more details, see [3].
In the present paper, we consider a linear periodic configuration aj = jL with

j = −∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞ and L an arbitrary constant vector which determines
the Oz axis. We also consider only one value for the strength, range parameters,
and the orbital quantum numbers: λk

j = λ, rk
j = r, �k

j = �. The Hamiltonian thus
becomes

Hm
� = lim

K→∞ 2K+1H
m
� (1)

2K+1H
m
� = p2

2M
+ λ

K∑
j=−K

|ξj 〉〈ξj | (2)

|ξj 〉 = exp(−ijL · p)r3/2|r, �,m〉. (3)

The projection of the orbital angular momentum,
(
mk

j = m
)
, is a good quantum number

because the operator �z commutes with Hm
� and 2K+1H

m
� . Mirror reflection through a plane

containing the chain axis is a symmetry operation which changes m into −m. As a result, the
energy eigenvalues depend on |m| only.

The restriction to only one value of orbital quantum number � may first appear unphysical.
This restriction is however physical in the low-energy limit where only the partial wave � = 0
contributes, or for example, for alkali atoms in the ground state where only the partial wave
� = 1 contributes.

In equation (2), the subscript 2K + 1 before H gives the number N of projectors in the
right-hand side, when j varies between −K and K. When N → ∞, one therefore has a
doubly infinite chain. In the study of a finite chain, we shall not restrict the problem to
odd number of centres, and, from now on, NHm

� = p2

2M
+ λ

∑N
j=1 |ξj 〉〈ξj | will denote the

Hamiltonian for a linear chain with N equidistant centres. The number of bound states of
NHm

� will be denoted by Nb. It will be seen in section 4.1 that NHm
� has at most N bound

states.
The physical question at the origin of the present work is: what are the conditions on

the strength parameter λ, the range parameter r and the intercentre distance L, for having
limN→∞ Nb

N
= ρ (0 � ρ � 1)? The answer will be given in section 4.2.1, equation (17).

In studying this problem, we are led to consider the (doubly) infinite complex symmetric
Toeplitz matrix (i.e. a complex symmetric matrix whose elements are constant along each
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diagonal parallel to the main diagonal) T (s):

. . . . . . . . . . . . . . . . . .

. . . 0 1 2−s 3−s . . .

. . . 1 0 1 2−s . . .

. . . 2−s 1 0 1 . . .

. . . 3−s 2−s 1 0 . . .

. . . . . . . . . . . . . . . . . .

Specifically,

−∞ � i, j � ∞ and Tij (s) =
{

0 if i = j

1/|i − j |s if i �= j
(4)

where i and j are elements of Z, the set of relative integers, and where s is an arbitrary complex
number. The spectrum S(s) of T (s) is given by

S(s) =
{

2
∞∑

n=1

cos(nπβ)

ns

∣∣∣∣∣ 0 � β � 1

}

when this series converges and by an analytic continuation in terms of polylogarithm functions
in the general case. This result is derived in section 5 for s = 2� + 1 (� = 0, 1, 2, . . .) and its
extension to the case of more general s values is discussed in section 6. For � > 0, this result
is a particular case of a general theorem concerning the spectrum of Toeplitz operators whose
symbols (i.e. the functions whose Fourier coefficients an are given by the matrix element
ai−j = Tij ) belong to the functions space L∞ on the circle (see e.g. theorem 1.2 of [7]).
However, this general theorem does not concern the case � = 0 because in that case the
symbol (given by the right-hand side of equation (18)) does not belong to L∞. Anyway, the
derivation of this result presented in section 5, valid for both cases � = 0 and � �= 0, makes
clear that β is the coordinate of a point in the reduced Brillouin zone, and therefore that the
density of states at a point of the spectrum S(s) of T (s), characterized by β, corresponds to a
uniform density in the variable β.

Finally, the zeros of the Riemann zeta function in the critical band 0 < Re(s) < 1 are
interpreted as the s values for which the curve S(s) in the complex plane has a multiple point
at the origin, of multiplicity equal to four at least.

A necessary preliminary step before coming to these results is the determination, for fixed
values of �,m, of the relation between the strength λ, the range r and the intercentre distance
L, for the existence of a zero-energy bound state (or resonance). This is the subject of the
two following sections where both the cases of a finite and of an infinite linear chain are
considered.

2. Zero energy for a finite linear chain

As explained in [3–6], the bound state energies for a finite number of centres, or equivalently
the poles on the negative real axis of the resolvent

G(z) =
[
z − p2/(2M) −

∑
k

Vk

]−1

can be determined as the negative z values for which the determinant of a matrix b(z) of order
equal to the number N of centres is zero. This matrix b(z) is defined by its matrix elements

bij (z) = δij − λ〈ξi |G0(z)|ξj 〉



8800 E de Prunelé

where G0(z) = [z − p2/(2M)]−1 is the free resolvent. The wavefunctions of these bound
states are exponentially decreasing at infinity. The diagonal elements of G0 are given by (see
equation (42) of [3])

(g0)jj (z) ≡ 〈ξj |G0(z)|ξj 〉 = −2Mr3ph+
� (pr)j�(pr).

The non-diagonal elements of G0 are given by (see equation (45) of [3])

(g0)jn (z) = −(−1)mr38πMp [j�(pr)]2 (2� + 1)

√
1

4π

2�∑
ν=0

√
2ν + 1iν

h+
ν (p|j−n| |L|)Y 0

ν (
−−−−−→
(j−n) L )

(
l l ν

0 0 0

)(
l l ν

−m m 0

)

with p ≡ √
2Mz. The right arrow in the argument of the spherical harmonics Y 0

ν means a
unit vector

(−→v ≡ v
|v|
)
. The three j symbols are defined as in [8], and the spherical Bessel

functions j�, h
+
ν , as in [9].

Let us consider the zero-energy case: j�(z) ∼ z�

(2�+1)!! and h+
ν (z) ∼ (2ν−1)!!

zν+1 as z → 0. In
this limit, the diagonal matrix element is given by

〈ξj |G0(0)|ξj 〉 = − 2Mr2

2� + 1
. (5)

For the non-diagonal matrix elements, one sees that only the term ν = 2� contributes in this
limit. The polar angle in the spherical harmonics is 0 or π for the geometrical configuration
of a linear chain on the z-axis. Since [8]

Y 0
2� (0, ϕ) = Y 0

2� (π, ϕ) =
√

4� + 1

4π

and since [8]

(−1)j2−j1

(
j1 j2 j1 + j2

−m m 0

)

=
[

(2j1)! (2j2)!

(2j1 + 2j2 + 1)! (j1 − m)! (j1 + m)! (j2 + m)! (j2 − m)!

] 1
2

(j1 + j2)!

one finally obtains

〈ξj |G0(0)|ξn〉 = − 2Mr2

(2� + 1)
(−1)�+m

(
r

|j−n|L
)2�+1

(2�)!

(l − m)! (l + m)!
.

Let us call λk the zeros (with respect to the variable λ) of the determinant of the matrix
whose elements are bij (0). Let us also introduce the symmetric Toeplitz matrix TN(2� + 1) of
order N:

1 � i, j � N and (TN)ij (s) =
{

0 if i = j
1

|i−j |s if i �= j
. (6)

A short calculation shows that λk will be expressed in terms of the eigenvalues tk of the real
symmetric Toeplitz matrix T2K+1(2� + 1) of order 2K + 1, by the relation

1

λk

= − 2Mr2

(2� + 1)

[
1 + gm

� (α) tk
]

(7)

gm
� (α) ≡ (−1)�+m (2�)!

(� − m)! (� + m)!
α2�+1 (8)
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where from now on α is defined by

α ≡ r

L
. (9)

One notes that

gm
� (α) = g−m

� (α) (10)

as expected since the energy depends only on |m| by mirror symmetry in a plane containing
the chain axis.

It is recalled that 0 < α � 1
2 since the distance L between two centres was supposed to be

greater than twice the range r of the interactions in [3]. These finite real symmetric Toeplitz
matrices clearly have zero trace.

3. Zero energy for infinite linear chain

The first key point of this paper is to note that for a (doubly) infinite linear chain, the problem
is invariant by translation in the z-direction by integer multiples of L. The translation group
is Abelian and its irreducible unitary representations are one dimensional. These irreducible
representations can be characterized by a real number β. The energies of a single electron in
an effective periodic interaction are thus indexed by a vector k in the first Brillouin zone of
the reciprocal lattice (here k = β π

L
−→z ,−1 � β < 1). This is the main result of what is known

as the ‘Bloch theorem’ for periodic systems. Time reversal symmetry (which corresponds
here to complex conjugation) yields [10] E(−k) = E(k), and thus, allows us to restrict the
study to the reduced Brillouin zone corresponding to 0 � β � 1. As is well known (see e.g.
[11]), the determination of energy values of one electron for the case of an infinite number of
centres on a lattice is reduced to the solution of the Schrödinger equation for a single centre,
with periodic boundary conditions depending on k. These boundary conditions relevant to the
present case are periodic boundary conditions in the z-direction, and, for negative energy, an
exponentially decreasing solution in the two other directions. It is then easy to see that the
poles of the total resolvent Gβ(z) are solutions of

1

λ
− 〈ξ |G0β(z)|ξ 〉 = 0

(the index j of ξj is omitted as these diagonal elements are j independent). One then proceeds
as in [4] and obtains

r3〈r, �,m|G0β(0)|r, �,m〉 = r3

(2π)2

1

L

∞∑
n=−∞

∫ ∞

−∞
dpx

∫ ∞

−∞
dpy(4π)2 |j�(pr)|2∣∣Ym

� (−→p )
∣∣2

−p2/2M

p =
√

p2
x + p2

y +
[π

L
(2n + β)

]2
.

The square modulus
∣∣Ym

� (−→p )
∣∣2 is given by [8]

∣∣Ym
� (−→p )

∣∣2 = (2� + 1)(� − m)!

4π(� + m)!

∣∣P m
� (cos(θ))

∣∣2
cos (θ) = bn√

p2
x + p2

y + b2
n

bn = π

L
(2n + β)
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where P m
� is an associated Legendre polynomial. The integral over dpx dpy can be expressed

in plane polar coordinates as 2π
∫ ∞

0 σ dσ with
(
p2

x + p2
y

) = σ 2. Finally, with the further

change of variable x = rp = r
√

σ 2 + b2
n, one obtains

r3〈r, �,m|G0β(0)|r, �,m〉 = −4Mr2α
(2� + 1) (� − m)!

(� + m)!
∞∑

n=−∞

∫ ∞

|(2n+β)|πα

dx

x
|j� (x)|2

∣∣∣∣P m
�

(
(2n + β) πα

x

)∣∣∣∣
2

where α is defined by equation (9). It is shown in appendix A how the sum Am
� (α, β) of the

series of integrals defined by

Am
� (α, β) ≡

∞∑
n=−∞

∫ ∞

|(2n+β)|πα

dx

x

∣∣∣∣j� (x) P m
�

(
(2n + β) πα

x

)∣∣∣∣
2

(11)

can be evaluated (see equation (A.4)). The result given by equation (A.4) is the second key
point of this paper. As a result, the critical values λc of λ are given by

1

λc

= 〈ξ |G0β(0)|ξ 〉 (12)

= − 2Mr2

(2� + 1)


1 + gm

� (α) 2
∞∑

j=1

cos (jπβ)

j 2�+1


 (13)

where the function gm
� is defined by equation (8).

For α → 0+, i.e. in the limit of infinite intercentre distances L, equation (13) reduces to
the result given by equation (5) for one centre, provided the series 2

∑∞
j=1 cos(jπβ)j−(2�+1)

converges. This series converges for every � value (0, 1, 2, . . .) and for every β value in
the interval [0, 1], except for the single case � = 0 and β = 0, where it has a logarithmic
divergence.

4. Physical results

4.1. Maximal number of bound state of NH

Application of the Hellmann–Feynman theorem ∂E
∂λ

= 〈�| ∂H
∂λ

|�〉 (see e.g. [12]) to the

Hamiltonian NH = p2

2M
+ λ

∑N
j=1 |ξj 〉〈ξj | gives

∂E

∂λ
=

N∑
j=1

|〈� | ξj 〉|2

where E is an eigenvalue and |�〉 a corresponding normalized eigenvector. One therefore
deduces that the energies of the bound states are increasing functions of the real strength
parameter λ. Let us first consider the Hamiltonian 1H with one projector only. Then, it is
easy to show that at most one bound state can exist (see e.g. [13]). More precisely, one bound
state exists if λ < − 2�+1

2Mr2 = 1λ (see equation (5)). Now let us consider the Hamiltonian 2H

with two projectors. The interlacing eigenvalue theorem for bordered Hermitian matrices (see
e.g. [14]) shows that the eigenvalues 1/(2λi) (i = 1, 2, 2λ2 < 2λ1) of the matrix of order
two, with elements 〈ξi |G0(0)|ξj 〉, will interlace 1λ. One deduces that one bound state exists
if 2λ2 < λ < 2λ1 and two bound states exist if λ < 2λ2. A recursion over the number N of
projectors finally shows that:



Conditions for bound states 8803

(i) There are at most N bound states for NH .
(ii) The critical values Nλk for which a zero-energy state exists for an Hamiltonian with N

projectors interlace the critical values N−1λk for an Hamiltonian with N − 1 projectors.

These results are general and do not depend on the particular nature of the states |ξj 〉.

4.2. Proportion of bound states for an infinite chain

4.2.1. The general case. From now on, we define the function f by

f (s, β) ≡ 2
∞∑

j=1

cos (jπβ)

j s
(14)

when the series (14) converges, and otherwise by an analytic continuation, conveniently
expressed in terms of the usual polylogarithm function Lis (see equations (A.5), (A.6)),

f (s, β) = Lis (exp(iπβ)) + Lis (exp(−iπβ)) . (15)

For the five values β = 0, 1
3 , 1

2 , 2
3 , 1, the function f (s, β) is simply related to the Riemann

zeta function ζ(s):

f (s, 0) = 2ζ(s) (16a)

f

(
s,

1

3

)
= (1 − 21−s)(1 − 31−s)ζ(s) (16b)

f

(
s,

1

2

)
= −21−s(1 − 21−s)ζ(s) (16c)

f

(
s,

2

3

)
= −(1 − 31−s)ζ(s) (16d)

f (s, 1) = −2(1 − 21−s)ζ(s). (16e)

The function f (2� + 1, β) is a decreasing function of β for 0 � β � 1. This can be seen from
the Appell integral representation of the polylogarithm functions [15]

Lis(z) = 1

�(s)

∫ ∞

0

zts−1

exp(t) − z
dt

which yields

f (s, β) = 2

�(s)

∫ ∞

0
t s−1 exp(t) cos (πβ) − 1

[exp(t) − 1]2 + 2 exp(t)[1 − cos(πβ)]
dt.

For s = 2� + 1, the integrand is real. Then, for 0 � β � 1, the numerator and the denominator
of the integrand are respectively decreasing and increasing functions of β, so that the integrand
is a decreasing function of β, and therefore also is f (2� + 1, β), for every value of the orbital
quantum number �. Equations (13), (8) then show that two cases have to be distinguished
according to the parity of � ± m. If � ± m is even, λc is a decreasing function of β, whereas
if � ± m is odd, λc is an increasing function of β. The proportion ρ of bound states of the
Hamiltonian ∞Hm

� , defined by ρ = limN→∞ Nb

N
for fixed values of the range parameter r,

the internuclear distance L, will therefore depend on the value of the strength parameter λ

according to the law

1

λ
=




− 2Mr2

(2�+1)

{
1 + gm

� (α)f (2� + 1, ρ)
}

if � ± m even

− 2Mr2

(2�+1)

{
1 + gm

� (α)f (2� + 1, 1 − ρ)
}

if � ± m odd.
(17)
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0.2 0.4 0.6 0.8 1

-0.5

-0.4

-0.3

-0.2

-0.1

Figure 1. Infinite linear chain. λ (ordinate), as a function of ρ (abscissa), according to equation
(17) (see the text). Thick grey curve: � = |m| = 0. Solid curve: � = 1, |m| = 0. Dashed curve:
� = 1, |m| = 1.

For � ± m odd, the terms cos (jπ (1 − ρ)) in the series defining f (2� + 1, 1 − ρ) can
also be written as (−1)j cos (jπρ). Figure 1 displays λ as a function of ρ for � = m = 0,
and for � = 1, |m| = 0, 1 according to equation (17). These calculations have been made
for M = 1, r = 1.817 6943, L = 5.645 01, corresponding to the values used in [4]. The
law given by equation (17) concerns an infinite chain. It is interesting to numerically
determine the number of bound states Nb for a finite linear chain with N centres in order
to appreciate the rapidity of convergence when N → ∞. The calculations have been made
for a chain with ten and five centres only (N = 10, 5) with the previous parameter values
of M, r,L, and for the λ values corresponding to ρ = 0, 1/5, 2/5, 3/5, 4/5, 1 in figure 1.
For N = 10 and for the three cases, � = m = 0, � = 1, |m| = 0, 1, it has been found that
Nb = 0, 2, 4, 6, 8, 10, for λ(0), λ

(
1
5

)
, λ

(
2
5

)
, λ

(
3
5

)
, λ

(
4
5

)
, λ (1) respectively. For N = 5 and

for the three cases, � = m = 0, � = 1, |m| = 0, 1, it has been found that Nb = 0, 1, 2, 3, 4, 5,
for λ(0), λ

(
1
5

)
, λ

(
2
5

)
, λ

(
3
5

)
, λ

(
4
5

)
, λ (1) respectively. The law given by equation (17) is

therefore useful already for such low N values, for these parameter values.
If each interaction Vj centred at each point Pj is required to be invariant under all rotations

of centre Pj , then each Vj must be of the form [3]

λr3 exp(−ijL · p)

{
�∑

m=−�

|r, �,m〉〈r, �,m|
}

exp(ijL · p).

In that case, the spectrum is the union of the spectra corresponding to each different |m| value,
since �z commutes with Hm

� . For fixed λ, r, L, � values, the proportion 0 � ρ � 1 of bound
states is then obtained as follows: for each |m| value between 0 and �, one first determines λ0

and λ1 corresponding respectively to � = 0, and � = 1 in equation (17). Then, if λ � λ0,
one has �m = 0, and if λ � λ1, one has �m = 1. Finally if λ1 < λ < λ0, one determines �m

according to equation (17). The proportion of bound states is then expressed as

ρ = 1

2� + 1

�∑
m=−�

ρm

= 1

2� + 1

[
ρ0 + 2

�∑
m=1

ρm

]
.
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Table 1. First line: β. Last line: f (1, β), see equation (14). The three other lines: the first column
gives the order N of the matrix TN(1), see equation (6); the second column gives the highest
eigenvalues of TN(1); the other five columns give the eigenvalues of TN(1) numbered βN when
all eigenvalues are sorted in decreasing order, with running number from 1 to N.

β 0 1/5 2/5 3/5 4/5 1

10 3.945 47 1.559 86 −0.024 7856 −0.776 527 −1.181 59 −1.364 25
100 8.514 12 1.017 35 −0.294 93 −0.944 823 −1.276 78 −1.386 05

1000 13.117 4 0.967 87 −0.320 663 −0.960 674 −1.285 03 −1.386 29

f (1, β) ∞ 0.962 424 −0.323 507 −0.962 424 −1.285 93 −1.386 29

4.2.2. The case of s wave (� = 0). The case � = 0 is a particular case because the series∑∞
j=1

cos(jπρ)

j
diverges for ρ = 0. For ρ �= 0, the sum of the series of equation (17) can be

expressed in terms of a logarithm function [16]

2
∞∑

j=1

cos (jπρ)

j
= − ln [2 (1 − cos (πρ))] (18)

and therefore
1

λ
= −2Mr2 {1 − α ln [2 (1 − cos (πρ))]} if � = 0. (19)

One deduces that ∞H 0
0 always supports a bound state however close λ < 0 may be to zero,

however large the intercentre distance L, and however small the range parameter r. Finally, if
λ � −{2Mr2 [1 − α ln (4)]}−1, then ρ = 1.

5. Mathematical results

By comparison of equations (7) and (13), one deduces that the spectrum S(2� + 1)

(�= 0, 1, 2, . . .) of the Toeplitz matrix T (2� + 1) (6) is given by

S(2� + 1) = {f (2� + 1, β) | 0 � β � 1}. (20)

The density of states (eigenvectors) corresponds to a uniform density for the variable β in the
interval 0 � β � 1. This corresponds to the fact that different points in the reduced Brillouin
zone have the same weight, or, otherwise stated, there is no privileged unitary irreducible
representation of the translation group. From

∣∣ cos(jπβ)

j 2�+1

∣∣ � 1
j 2�+1 , and from the convergence

of the series
∑∞

j=1 j−(2�+1) if � �= 0, it follows that the series (14) is normally convergent if
� �= 0. As normal convergence implies uniform convergence, the integral

2
∫ 1

0




∞∑
j=1

cos (jπβ)

j 2�+1


 dβ

can be made term-by-term and thus clearly yields 0. Taking into account a uniform density in
β, this integral evaluates the trace, and the expected zero-trace property for a bound spectrum
is thus manifested.

In order to appreciate the behaviour of the convergence, as N increases, of the spectra
of the matrix TN(2� + 1) of order N (see equation (6)) towards the expected spectra given
by equation (20), tables 1, 2 report some numerically computed eigenvalues compared to
numerical values of f (2� + 1, β) for � = 0 (table 1) and for � = 1 (table 2). (In table 1,
f (1, β) is given by equation (18).)
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Table 2. As in table 1, but for � = 1, so that f (2� + 1, β) and TN(2� + 1) now read f (3, β) and
TN(3).

β 0 1/5 2/5 3/5 4/5 1

10 2.213 86 1.780 27 0.657 144 −0.448 403 −1.293 11 −1.745 23
100 2.399 84 1.644 41 0.408 572 −0.729 691 −1.510 361 −1.802 41

1000 2.404 05 1.629 11 0.381 74 −0.758 684 −1.530 5 −1.803 08

f (3, β) 2.404 11 1.627 39 0.378 736 −0.761 913 −1.532 71 −1.803 09

-1 0 1 2

Figure 2. Above the horizontal axis: eigenvalues of T50(3) (see equation (6)), to be compared,
below the horizontal axis, with 2

∑∞
j=1 cos(jπ k

49 )/j3 for k = 0, 1, 2, . . . , 49.

In order to appreciate visually that the density of states in equation (20) corresponds to a
uniform density in β, all the numerically computed eigenvalues of T50(3) (see equation (6))
are reported in figure 2, above the horizontal axis, together with, below the horizontal axis,
2
∑∞

j=1 cos
(
jπ k

49

) /
j 3 for k = 0, 1, 2, . . . , 49, i.e. a uniform distribution with respect to β. It

is clear that the distribution of the numerically computed eigenvalues agrees with an uniform
distribution with respect to β of 2

∑∞
j=1 cos (jπβ) /j 3.

Except for the case � = 0, the spectrum is bound. This was expected since all the
Geršgorin discs [14] of the matrices TN (2� + 1) are centred on the origin and their maximum
radius converges to 2ζ (2� + 1) when N → ∞ for � �= 0, and diverges for � = 0. Taking into
account a uniform density in β, the zero-trace property can nevertheless be explicitly verified
for � = 0 from equation (18) since

−
∫ 1

0
ln [2 (1 − cos (πβ))] dβ = 0.

6. Mathematical digression

In this section we examine, mostly by numerical diagonalization, how the spectra of large
truncated Toeplitz matrices T (s) given by equation (4), are related to

S(s) = {f (s, β) | 0 � β � 1} (21)

for values of s different from 2� + 1, including complex values.
To avoid repetitions, we note from now on that the series 2

∑∞
j=1 cos (jπβ) /j s converges

uniformly for Re(s) > 1, and that the zero-trace property is then verified by term-by-term
integration:

∫ 1
0 cos (jπβ) dβ = 0. For Re(s) � 1, β = 0 is a singularity.
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-1 0 1 2

Figure 3. Above the horizontal axis: eigenvalues of T50(4) (see equation (6)), to be compared,
below the horizontal axis, with 2

∑∞
j=1 cos(jπ k

49 )/j4 for k = 0, 1, 2, . . . , 49.

6.1. Zero or even positive values of s

For s = 2k, k = 0, 1, . . . ,∞, the spectrum given by equation (21) can be expressed in terms
of Bernoulli polynomials Bn defined by

t exp(xt)

exp(t) − 1
=

∞∑
k=0

Bk(x)
tk

k!
.

One obtains (see equation (9.622) of [16], or [20])

S (2k) =
{

(−1)k−1 (2π)2k

(2k)!
B2k

(
β

2

)∣∣∣∣∣ 0 � β � 1

}
. (22)

6.1.1. Zero value of s. For k = 0 (i.e. the non-integer value � = − 1
2 in equation (20)),

equation (22) gives

S(0) = {−1}. (23)

Now, it is easy to determine the spectrum of the corresponding truncated Toeplitz matrix
TN(0) since this matrix has zero on the main diagonal and unity elsewhere. If this matrix
corresponds to a linear operator T with respect to the basis ei, i = 1, . . . , N , then one can
easily verify that the N −1 vectors e1 −ei, i = 2, . . . , N are eigenvectors of T with eigenvalue
−1. The remaining vector

∑N
i=1 ei of the new basis is an eigenvector with eigenvalue N − 1.

Thus the spectrum is {−1, N − 1} in the finite case. If we consider the limit N → ∞, it
is clear that limN→∞

∑N
i=1 ei does not converge, and that there is no eigenvector corresponding

to non-zero eigenvalue. The spectrum in the infinite limit can thus be appropriately considered
to be the zero point only, as given by equation (23). The zero-trace property of finite matrices
is therefore not manifested as the sum of eigenvalues in the limit N → ∞.

It is seen that the general result given by equation (21) may discard infinite points, a fact
that will be recurrent from now on when some of the eigenvalues of the truncated Toeplitz
matrix TN(s) diverge as N → ∞. As a consequence, the zero-trace property of finite matrices
may not always correspond to zero values of the integrals

∫ 1
0 f (s, β) dβ.

6.1.2. Strictly positive even values of s. Numerical diagonalizations of truncated Toeplitz
matrices have confirmed equation (22) for some k values. Figure 3 provides an illustration for
s = 2k = 4, and N = 50.

6.2. Negative integer values of s

For s = −n, a negative integer, one has [15]

Li−n(z) =
(

z
d

dz

)n
z

1 − z
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-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4. Above the horizontal axis: arctangent of the eigenvalues of T50(−3) (see
equation (6)), to be compared, below the horizontal axis, with the arctangent of the right-hand side of
equation (28) where β = k

49 for k = 0, 1, 2, . . . , 49.

and therefore

Li−n (exp (iπβ)) = (−i)n−1

2πn

(
d

dβ

)n

[cot (πβ/2)] (24)

f (−n, β) = (−i)n−1

2πn

(
d

dβ

)n

{cot (πβ/2) [1 − (−1)n]} (25)

which is clearly zero if n is even.

6.2.1. Negative even integer values. For negative even integer values of s, s = −2k, k =
1, 2, . . . ,∞, equation (25) thus gives

S (−2k) = {0} . (26)

It has been verified for some k,N values that the corresponding truncated Toeplitz matrix of
order N has a kernel of dimension equal to N −2k −1. The absolute values of the 2k non-zero
eigenvalues increase rapidly with N, and therefore result (26) is expected. We shall not study
further this particular interesting case in the present paper.

6.2.2. Negative odd integer values. For negative odd integer values of s, s = −2k − 1, k =
0, 1, . . . ,∞, equation (24) gives

S (−2k − 1) =
{

(−1)k

π2k+1

(
d

dβ

)2k+1

cot (πβ/2)

∣∣∣∣∣ 0 � β � 1

}
. (27)

Numerical diagonalizations of truncated Toeplitz matrices have confirmed equation (27) for
some k values. As the spectrum is unbounded, we apply the function arctangent to rescale
the real line between

[−π
2 , π

2

]
. Figure 4 provides an illustration for s = −2k − 1 = −3, and

N = 50,

(−1)

π3

(
d

dβ

)3

cot (πβ/2) = 2 + cos (πβ)

4
[

sin
(

πβ

2

)]4 . (28)

Two eigenvalues of the truncated T50 matrix whose arctangent is close to −π
2 ensure the

zero-trace property of the truncated T50 matrix, and have no images in the infinite limit.

6.3. Arbitrary complex values of s

The numerically computed eigenvalues of the truncated Toeplitz matrix of order
500, T500 (1.5 + i49) are reported at the top of figure 5, whereas the lower graph of this
figure reported 2

∑∞
j=1 cos

(
jπ k

499

)/
j 1.5+i49, k = 0, 1, 2, . . . , 499. It is clear that the general
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-2 -1 1 2

-1
-0.75
-0.5
-0.25

0.25
0.5

0.75
1

-2 -1 1 2
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-0.5
-0.25

0.25
0.5
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Figure 5. Top graph: eigenvalues of T500 (1.5 + i49), see equation (6), in the complex plane.
Bottom graph: f (1.5 + i49, k

499 ) for k = 0, 1, . . . , 499, see equation (14), in the complex plane.

behaviour, including the density of states, is obtained. The small disagreements which are
visible near the right extremity of the spectrum indicate that the convergence is slower in this
region.

6.4. Spectral interpretation of the zeros of the Riemann zeta function

From now on, we consider that s belongs to the critical strip 0 < Re(s) < 1. In that case,
f (s, 0) cannot be considered to be the limit of f (s, β) when β → 0 because β = 0 is a
singularity. Let us go over to the spectrum S(s) of T (s) starting from β = 1. When s is a
zero of the Riemann zeta function, equation (16e) tells us that we start at the origin of the
complex plane. As β decreases, we describe in the complex plane a curve which crosses
the origin three times, when β = 2

3 , 1
2 , 1

3 , according to equations (16d), (16c), (16b). The
zeros of the Riemann zeta function are thus interpreted as multiple points of the spectrum
of the Toeplitz matrix T (s). Figure 6 shows the spectrum for the first non-trivial zero of
the Riemann zeta function, s � 1/2 + i14.134 725. Let us first consider the bottom graph
corresponding to f (1/2 + i14.134 725, β). As β starts to decrease from unity, one leaves the
origin slightly below the negative real axis, and then moves clock-wise. One crosses the origin
three times again, and, as β approaches zero, the curves spiral with increasing radius, and
therefore the values for k smaller than about 30 are not visible in this curve. The top graph,
corresponding to the numerically computed eigenvalues of T500(1/2 + i14.134 725), exhibits
the same general behaviour, including density of states. One sees that the convergence to
f (1/2 + i14.134 725, β) becomes slower as β decreases.

7. Summary and conclusions

For the Hamiltonian NH = p2

2M
+ λ

∑N
j=1 |ξj 〉〈ξj |, it has been shown that at most N (the number

of projectors) bound states exist. For an infinite linear chain, this Hamiltonian takes the form
given by equations (1), (2), (3). For fixed values of �,m, there are then three parameters
in this Hamiltonian: the interaction range parameter r, the intercentre distance parameter L
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Figure 6. Top graph: eigenvalues of T500 (1/2 + i14.134 725), see equation (6)), in the complex
plane. Bottom graph: f

(
1/2 + i14.134 725, k

499

)
for k = 0, 1, . . . , 499, see equation (14), in the

complex plane. The values corresponding to k smaller than about 30 are not visible since the
corresponding points spiral with increasing radii and are outside the figure.

(with 0 < r/L � 1/2) and the strength interaction parameter λ. The following question has
been addressed: for given values of r, L, what is the value of the remaining parameter λ if one
requires that the limit when N → ∞ of the ratio of the number of bound states to the total
number of centres, Nb/N , takes an arbitrary fixed value ρ (0 � ρ � 1)? The answer is given
by equation (17) with α = r/L, the function gm

� defined by equation (8) and the function f

defined by equation (14). To solve this question, we have been led to consider the spectra of
doubly infinite Toeplitz matrices given by equation (4) with s = 2� + 1 = 1, 3, 5, . . . . The
spectra are given by

S (2� + 1) =
{

2
∞∑

n=1

cos (nπβ)

n2�+1

∣∣∣∣∣ 0 � β � 1

}
.

The density of states corresponds to a uniform density for β. From a physicist point of view
this follows from the interpretation of β as position coordinate in the reduced Brillouin zone.
In section 6, we examine how numerical diagonalization of truncated Toeplitz matrices (4)
converges to the expression S(s) for some s values different from 2� + 1. In particular, this
leads to interpret the zeros of the Riemann function ζ(s) in the critical strip 0 < Re(s) < 1 as
multiple points (at the origin) of the spectra of the Toeplitz matrices given by equation (4).

Let us conclude with the types of physical problems related to this work. The model used in
this paper is that proposed in [3]. This model is exactly solvable for an arbitrary geometrical
configuration of a finite number of centres. This sentence means that energy eigenvalues
are the zeros of a determinant of a matrix of order N (the number of projectors) whose
matrix elements are simple analytical functions. The search for the zeros however required
numerical calculations. Once the energy eigenvalues are determined, the eigenfunctions can be
determined exactly. In the present paper, we derive an exact result (equation (17)) concerning
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the proportion of bound states for one infinite system: a periodic linear chain. It has been
verified that this result may be useful for estimating a priori (i.e. without performing the search
for zeros which gives the energy of the bound states) the number of bound states of a finite
linear chain, even with a small number of centres. It would be interesting to extend the present
work to other infinite systems, in particular Fibonacci chains and Penrose structures. One
then expects that the strength interaction parameter λ as function of the proportion of bound
states ρ will exhibit gap structures analogous to the energy gap structures. It may be easier to
quantify λ subject to the boundary condition of the occurrence of a zero-energy bound state,
than to quantify the energy directly.

Appendix A. Evaluation of a series

This appendix only gives the principal steps which allow us to go from equations (11) to (A.4)
for 0 < α � 1

2 and 0 < β � 1, without giving all detailed justifications of the steps. The
previous inequalities ensure that |2n + β| πα > 0. In order to avoid the display of too many
formulae, we sometimes refer directly to the equation numbers pertaining to the references
cited.

To evaluate the series of integrals defined by equation (11) we start from an integral
representation of the square of a regular spherical Bessel function [16, 17]:

j 2
� (x) = 1

2x

∫ π

0
sin

[
2x sin

(ϕ

2

)]
P� [cos (ϕ)] cos

(ϕ

2

)
dϕ. (A.1)

As P m
� (−z) = (−1)�+m P m

� (z) [8], the square
[
P m

� (z)
]2

is an even function of z, and
(2n + β) can be replaced by |2n + β| in the argument of equation (11),

Am
� (α, β) =

∞∑
n=−∞

∫ ∞

|(2n+β)|πα

dx

x

∣∣∣∣P m
�

( |2n + β| πα

x

)∣∣∣∣
2

× 1

2x

∫ π

0
sin

[
2x sin

(ϕ

2

)]
P� [cos (ϕ)] cos

(ϕ

2

)
dϕ.

For each n, the integrand, to be denoted by g (x, ϕ), is a continuous function on the region
D = [|(2n + β)| πα,∞[×[0, π ]. The argument of P m

� varies between 1 and 0, and then it
is easy to show that |g (x, ϕ)| < K/x2, with K a constant. The integral of K/x2 over the
domain D converges, and therefore the integral

∫ ∞
|(2n+β)|πα

g (x, ϕ) dx is normally convergent
for ϕ ∈ [0, π ]. Normal convergence implies uniform convergence, and the latter allows us to
interchange the order of integration which will be made below.

Before interchanging the order of integration, consider the effect of splitting the interval
of integration [0, π ] over ϕ into two intervals, [0, ε] and [ε, π ], and let us verify explicitly
that the contribution, to be denoted by C (ε) to Am

� (α, β) of the interval [0, ε] goes to zero as
ε → 0+. To first order in ε: P� [cos (ϕ)] = 1 + O(ϕ2), and the integral becomes∫ ε

0
sin [2x sin (ϕ/2)] cos (ϕ/2) dϕ = 2 sin2

[
x sin

(
ε
2

)]
x

.

Let K be a majorant of
∣∣P m

� (z)
∣∣2 when 0 � z � 1. Then

|C (ε)| � K

∞∑
n=−∞

∫ ∞

|(2n+β)|πα

dx

x3
sin2

[
x sin

(ε

2

)]

� K

∞∑
n=−∞

∫ ∞

|(2n+β)|πα

dx

x3
� K ′
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with K ′ a finite number independent of ε. It follows that C(ε) can be majorized to any prescribe
accuracy by the finite sum K

∑N
n=−N

∫ ∞
|(2n+β)|πα

dx
x3 sin2

[
x sin

(
ε
2

)]
and this finite sum tends to

zero when ε → 0+ since each of its terms goes to zero. Thus one has

Am
� (α, β) = lim

ε→0+

∞∑
n=−∞

∫ π

ε

dϕ

∫ ∞

|(2n+β)|πα

dx

x

∣∣∣∣P m
�

( |2n + β| πα

x

)∣∣∣∣
2

× 1

2x
sin

[
2x sin

(ϕ

2

)]
P� [cos (ϕ)] cos

(ϕ

2

)
.

The square of the associated Legendre polynomial P m
� (z) is a polynomial in the variable z2 of

degree � [8]:

∣∣P m
� (z)

∣∣2 =
�∑

k=0

pm
k z2k.

The change of variable X = 2x sin
(

ϕ

2

)
then yields

Am
� (α, β) = lim

ε→0+

∞∑
n=−∞

1

2

�∑
k=0

pm
k

∫ π

ε

dϕP� [cos (ϕ)] cos
(ϕ

2

) [
2 sin

(ϕ

2

)]2k+1

×
{

[|2n + β| πα]2k

∫ ∞

|(2n+β)|2πα sin( ϕ

2 )
dX

sin (X)

X2(k+1)

}
.

The change of variable v = X
|2n+β| for the term inside the curly braces leads to the expression

(πα)2k

{
1

|2n + β|
∫ ∞

2πα sin( ϕ

2 )
dv

sin (|2n + β| v)

v2(k+1)

}
.

Integration by parts of this last expression yields

(πα)2k

2k + 1

{
1[

2πα sin
(

ϕ

2

)]2k+1

[
sin

[
2πα sin

(
ϕ

2

) |2n + β|]
|2n + β|

]

+

[∫ ∞

2πα sin( ϕ

2 )
dv

cos (v |2n + β|)
v2k+1

]}

so that

Am
� (α, β) = lim

ε→0+

∞∑
n=−∞

1

2

�∑
k=0

pm
k

2k + 1

∫ π

ε

dϕP� [cos (ϕ)] cos
(ϕ

2

)

×
{

1

(πα)

[
sin

[
2πα sin

(
ϕ

2

) |2n + β|]
|2n + β|

]

+ (πα)2k
[
2 sin

(ϕ

2

)]2k+1
[∫ ∞

2πα sin( ϕ

2 )
dv

cos (v |2n + β|)
v2k+1

]}
.

The first term inside the curly braces is k independent. After term-by-term integration of∫ 1
−1

[
P m

� (x)
]2

dx, the orthonormality relations for associated Legendre polynomials yield

�∑
k=0

pm
k

2k + 1
= (� + m)!

(2� + 1)(� − m)!
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Am
� (α, β) = lim

ε→0+

∞∑
n=−∞

1

2

∫ π

ε

dϕP� [cos (ϕ)] cos
(ϕ

2

)

×
{

(� + m)!

(2� + 1) (� − m)!

1

(πα)

[
sin

[
2πα sin

(
ϕ

2

) |2n + β|]
|2n + β|

]

+
�∑

k=0

pm
k

2k + 1
(πα)2k

[
2 sin

(ϕ

2

)]2k+1
[∫ ∞

2πα sin( ϕ

2 )
dv

cos (v |2n + β|)
v2k+1

]}
.

(A.2)

The interchange of the order of integration and of summation in the first term inside the
curly braces of equation (A.2) leads to the evaluation of a trigonometric series

∞∑
n=−∞

sin [(2n + β) γ ]

2n + β
= π

2
for 0 < γ = 2πα sin

(ϕ

2

)
< π. (A.3)

From
∣∣∑m

n=j exp(inx)
∣∣ � 2/ |exp(ix) − 1| for x �= 2kπ , and for k, j,m ∈ Z, and from the

decrease to zero of the sequence 1/ |2n + β| as n → ∞, one can use the Abel criterion (see
e.g. [18]) to show the uniform convergence of this series on every closed interval which does
not contain 2kπ . This justifies the interchange of the order of integration and summation.
Result (A.3) follows after some elementary calculations from (see e.g. equation 12.5.1 of [19])

∞∑
n=−∞

exp(inθ)

n − a
= −2π i

exp(iaθ)

exp(ia2π) − 1
if 0 < θ < 2π.

The interchange of the order of integration and of summation in the second term inside the
curly braces of equation (A.2) leads to the evaluation of a trigonometric series which produces
a series of Dirac distributions:

∞∑
n=−∞

cos (v |2n + β|) = π

∞∑
j=−∞

δ (v − jπ) cos (jπβ) .

This leads to

Am
� (α, β) = 1

2

∫ π

0
dϕP� [cos (ϕ)] cos

(ϕ

2

){
(� + m)!

(2� + 1)(� − m)!

1

2α

+
�∑

k=0

pm
k

2k + 1
(πα)2k

[
2 sin

(ϕ

2

)]2k+1
π

∞∑
j=1

[
cos (jπβ)

(jπ)2k+1

]}
.

Now from equation (7.233) of [16]

1

4α

∫ π

0
dϕP� [cos (ϕ)] cos

(ϕ

2

)
= 1

(2α) (2� + 1)
.

The change of variable x = cos (ϕ) yields∫ π

0
dϕP� (cos (ϕ)) cos

(ϕ

2

) (
2 sin

(ϕ

2

))2k+1
= 2k

∫ 1

−1
dxP� (x) (1 − x)k .

This last integral is zero if k < � (see equation (7222.1) of [16]). For k = �, the change of
variable x → −x yields from equation (7222.2) of [16]:∫ π

0
dϕP� (cos (ϕ)) cos

(ϕ

2

) (
2 sin

(ϕ

2

))2�+1
= (−1)� 22�+1 (�!)2

(2� + 1)!
.
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Am
� (α, β) can then be expressed as

Am
� (α, β) =


 (� + m)!

(2� + 1)(� − m)!

1

(2α)(2� + 1)

+
pm

�

2� + 1
(α)2� (−1)� 22� (�!)2

(2� + 1)!

∞∑
j=1

[
cos (jπβ)

j 2�+1

]
 .

Finally, from equation (2.5.17) of [8]

pm
� = (−1)m

[
(2�)!

2��! (� − m)!

]2

one obtains

Am
� (α, β) = 1

(2� + 1)2


 (� + m)!

(� − m)!

1

(2α)
+ (−1)�+m α2� (2�)!

[(� − m)!]2

∞∑
j=1

cos (jπβ)

j 2�+1


 . (A.4)

It is remarkable that the α dependence of Am
� (α, β) splits into the sum of two power laws,

and that the β dependence reduces to the series 2
∑∞

j=1 cos(jπβ)j−(2�+1). This series can be
expressed in terms of the polylogarithm function Lis defined by the series

Lis (z) =
∞∑

j=1

zj

j s
(A.5)

when it converges, and by analytic continuation otherwise [20]. One has

2
∞∑

j=1

cos (jπβ) j−(2�+1) = Li2�+1 (exp(iπβ)) + Li2�+1 (exp(−iπβ)) (A.6)

= f (2� + 1, β) . (A.7)

The polylogarithm functions are also a particular case of the Lerch phi function �(z, s, a) =∑∞
j=0

zj

(a+j)s
where any term with a + j = 0 is excluded, by the relation Lis (z) = �(z, s, 0).

For references on the polylogarithm functions, see e.g. [15, 20, 21].
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